

1 Validation of SOFIE nitric oxide measurements

- 2 Mark E. Hervig^{1,*}, Benjamin T. Marshall², Scott M. Bailey³, David E. Siskind⁴, James M.
- 3 Russell III⁵, Charles Bardeen⁶, Kaley A. Walker⁷, Bernd Funke⁸
- 4 ¹GATS, Driggs, Idaho, USA.
- ⁵ ²GATS, Hampton, Virginia, USA.
- 6 ³Virginia Polytechnic Institute, Blacksburg, Virginia, USA.
- ⁴Space Science Division, Naval Research Laboratory, Washington, DC, USA.
- 8 ⁵Hampton University, Hampton, Virginia, USA.
- 9 ⁶NCAR, Boulder, Colorado, USA.
- ⁷Department of Physics, University of Toronto, Toronto, Canada.
- ⁸Instituto de Astrofísica de Andalucía, CSIC, Granada, Spain.
- 12 *Corresponding author. E-mail address: m.e.hervig@gats-inc.com (M. Hervig).
- 13

14 Abstract. Nitric oxide (NO) measurements from the Solar Occultation for Ice Experiment 15 (SOFIE) are validated through detailed uncertainty analysis and comparisons with independent observations. SOFIE was compared with coincident satellite measurements from the Atmospheric 16 17 Chemistry Experiment (ACE) - Fourier Transform Spectrometer (FTS) instrument, and the 18 Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument. The 19 comparisons indicate mean differences of less than ~50% for altitudes from roughly 50 to 105 km 20 for SOFIE spacecraft sunrise, and 50 to 140 km for SOFIE sunsets. Comparisons of NO time series 21 show a high degree of correlation between SOFIE and both ACE and MIPAS for altitudes below ~130 km, indicating that measured NO variability in time is robust. SOFIE uncertainties increase 22 below ~80 km due to interfering H₂O absorption, and from signal correction uncertainties which 23

- 24 are larger for spacecraft sunrise compared to sunset. These errors are sufficiently large in sunrises
- 25 that reliable NO measurements are infrequent below ~80 km.

26 1. Introduction

27 The Solar Occultation for Ice Experiment (SOFIE) has measured nitric oxide (NO) from the Aeronomy of Ice in the mesosphere (AIM) satellite since May 2007. SOFIE NO measurements 28 29 have been the topic of numerous science investigations, including studies of thermosphere -30 stratosphere coupling (Bailey et al., 2015; Siskind et al., 2015; Hendrickx et al., 2018), effects of 31 the 27-day solar rotation (Hendrickx et al., 2015), and the roles of dynamics and chemistry in diurnal variability (Siskind et al., 2019). SOFIE NO observations have also been used to determine 32 the importance of changes in geomagnetic activity and solar radiation (Hendrickx et al., 2017), 33 34 and to characterize the response of NO to electron precipitation (Smith-Johnsen et al., 2017; 2018; 35 Newnham et al., 2018). SOFIE version 1.3 (V1.3) NO measurements are validated here through 36 uncertainty analysis and comparisons with correlative measurements.

37 Coincident satellite measurements are from the Atmospheric Chemistry Experiment (ACE) 38 - Fourier Transform Spectrometer (FTS) instrument, and the Michelson Interferometer for Passive 39 Atmospheric Sounding (MIPAS) instrument. The ACE-FTS instrument has used solar occultation 40 to measure more than 30 trace gases and over 20 isotopologues from 2004 to present (Bernath et 41 al., 2005). ACE NO measurements span ~ 6 to 107 km altitude with a vertical resolution of ~ 3.5 42 km, and retrievals are reported at the oversampled vertical interval of 1 km. This work used version 43 3.5 NO retrievals, which are based on measurements between 5.056 and 6.063 µm wavelength 44 sampled with 39 micro-windows (Kerzenmacher et al., 2008; Sheese et al., 2016). The main 45 interfering species in this region is O_3 , with smaller contributions from CO_2 , H_2O , and COF_2 . MIPAS operated onboard the Envisat satellite during 2005 – 2012 in a sun-synchronous orbit with 46

47 equator crossing at 10 am and 10 pm local time. MIPAS measured limb emission spectra covering 48 4.15 to 14.6 µm wavelength using a Fourier transform spectrometer. MIPAS primarily observed 49 altitudes from 6 to 68 km, with periodic (one day in ten) observations extending into the 50 thermosphere (~150 km). The MIPAS NO product is reported at 1 km intervals, but has a vertical 51 resolution of 5 - 15 km, except within the upper mesosphere outside polar winter where the 52 resolution degrades up to 20 km. NO emission measured at 5.3 µm was used to retrieve NO volume 53 mixing ratios (VMR) (Funke et al., 2005, Bermejo-Pantaléon et al., 2011). The mixing ratios were 54 converted to number densities (ND, molecules cm^{-3}) using temperatures derived from 15 μ m 55 emissions below 100 km and from 5.3 µm above (jointly retrieved with NO). This work uses data version V5r NOwT 622. Bender et al (2015) report NO measurements comparisons including 56 57 ACE, MIPAS, the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY 58 (SCIAMACHY) instrument, and the sub-millimeter radiometer (SMR) satellite instrument. They 59 found mean differences of 30 to 100%, depending on latitude, season, and altitude.

60 2. SOFIE Observations

61 SOFIE uses solar occultation to measure vertical profiles of temperature, five gaseous species (O₃, H₂O, CO₂, CH₄, and NO), polar mesospheric clouds (PMC), and meteoric smoke 62 63 (Gordley et al., 2009; Hervig et al., 2009). NO measurements are accomplished using broadband 64 (~2% filter width) measurements centered at 5.32 µm wavelength. Gomez-Ramirez et al. (2013) describe the SOFIE NO observations, signal corrections, and retrievals. The photo conductive 65 66 detector experiences a response oscillation due to the thermal shock of transitioning the field-ofview (FOV) from dark space to the sun, at the start of each observation. This thermal response 67 68 artifact was successfully corrected in ground processing, resulting in NO retrievals that span ~30 69 to 149 km altitude. The SOFIE FOV subtends ~1.5 km vertically, but retrieved NO has a coarser

70 effective vertical resolution (~2.5 km) due to measurement noise and retrieval errors. Gomez-71 Ramirez et al. compared SOFIE version 1.2 NO profiles to coincident ACE measurements for 72 altitudes from 87 - 105 km, showing negligible differences for Southern Hemisphere (SH) SOFIE 73 measurements (spacecraft sunset) and ~18% differences in the Northern Hemisphere (NH) 74 (sunrise). SOFIE NO results are reported as both VMR and ND. SOFIE retrieves temperatures (T) 75 from 17 - 100 km altitude, and T from the mass spectrometer incoherent scatter (MSIS) model are 76 used above 100 km (see Marshall et al., 2011). Because VMR requires knowledge of air density 77 (and thus T), the SOFIE VMR likely contain large errors above 100 km due to MSIS T 78 uncertainties. NO ND has the advantage of being independent of T, and thus is recommended for 79 use above 100 km.

80 SOFIE NO profiles contain values that indicate missing data (-1e24), which imply that the signal was either not measured or contained artifacts that rendered it unusable. There are also 81 82 values which indicate a good measurement, but an unsuccessful retrieval (10^{-14} in VMR). These 83 instances correspond to cases where the simulated signal considering interfering gases was greater than the observed signal. These situations clearly indicate errors in the interference, and/or the 84 85 measured signals. In V1.3, the unsuccessful retrievals were included in vertical smoothing of the 86 NO VMR profile prior to output, which resulted in large errors in the two points above and below 87 the unsuccessful layer. These values were removed in post-processing, along with points 88 associated with PMCs, which have erroneously increased NO (see details below). PMCs are 89 clearly identified in SOFIE profiles using multi-wavelength observations as described in Hervig et al. (2009). The filtered profiles were then smoothed by box-car averaging on a 3 km vertical 90 91 grid (see Figure 1a). The filtered and smoothed V1.3 NO profiles are available on the SOFIE 92 webpage (sofie.gats-inc.com).

93 Figure 1b shows the fraction of successful SOFIE NO measurements as a function of 94 altitude for SOFIE spacecraft sunrise and sunset. Between ~45 and 80 km, sunrises are successful 95 less than 20% of the time, while sunsets are successful more than 50% of the time. This is 96 comparable to ACE, which has a similar fraction of retrieval success at these heights, although no 97 appreciable difference between spacecraft sunrise and sunset (Figure 1b). MIPAS has very few 98 unsuccessful NO retrievals (<3%), and only reports the valid results. The often low fraction of 99 good NO results below ~80 km should be born mind when using the SOFIE (and ACE) NO 100 products.

101 **2.1. Uncertainty Analysis**

The SOFIE NO uncertainty analysis presented here is an extension of the analysis described in Gomez-Ramirez et al. (2013). Retrieved NO ND error mechanisms can be categorized as due either to the SOFIE measurements, or to the signal simulations used in the retrievals. Simulation uncertainties include modeling errors, the representation of instrument characteristics

106 (e.g., relative spectral response (RSR)), and the description of interfering gases and aerosols.

107 It is useful to first understand the relative signal contributions from interfering gases and 108 aerosols in the SOFIE NO bandpass, as these can be the largest error sources. Figure 2 shows 109 calculated signals considering polar summer conditions. The signal is due entirely to NO above 110 \sim 85 km, with the main interference at lower altitudes coming from H₂O, CO₂, and O₃. H₂O 111 interference is removed using SOFIE H₂O measurements which cover \sim 20 to 95 km altitude and 112 have uncertainties of $\sim 15\%$ (Rong et al., 2010). CO₂ is described using model results (Garcia et 113 al., 2007) which have uncertainties of <5%. O₃ interference is removed using SOFIE O₃ retrievals that span \sim 55 - 110 km with uncertainties of <10% (Smith et al., 2013). Climatological O₃ is used 114 below 55 km, which can have large uncertainties. Fortunately the O_3 contribution to the SOFIE 115 116 NO signal is small at these heights (Figure 2). The upcoming SOFIE version (V1.4) will use new 117 SOFIE O₃ retrievals that extend down to \sim 15 km altitude. Interference from stratospheric sulfate aerosols (SSA) is negligible above ~30 km, where NO is retrieved. 118

Figure 2. Relative contribution of various gases, PMCs (a layer from 81 - 87 km, centered at 84 km), and stratospheric sulfate aerosols (SSA), in the SOFIE 5.32 μ m band used to measure NO. The results were simulated using average conditions near 66°S latitude in summer.

119

120 PMCs, which appear during polar summer, can contribute a large fraction of the total 121 SOFIE NO signal at PMC heights (~80 - 90 km). The example in Figure 2 is for a moderate PMC, 122 which contributes ~50% of the total signal near 84 km. This example also illustrates that the PMC 123 signal can extend from 20 to 30 km below the PMC layer, because the tangent path view includes a contribution from altitudes above. PMC interference is not removed in V1.3 (it will be in V1.4). 124 125 The artificial increase in retrieved NO ND when PMCs are present is illustrated by comparing 126 concurrent profiles with and without PMCs present, where the contamination is obvious at ~80 to 127 90 km (Figures 3a and 3b). NO ND can be erroneously increased by factors of 10 or more by PMC 128 contamination (Figure 3c), and it is thus imperative to not use NO when PMCs are present. Note that this effect is typically worse in the NH where PMCs typically have greater volume density 129 130 (e.g., Hervig et al., 2009). Because the portion of NO profiles contaminated by PMCs has been 131 removed in the SOFIE data file described above, it is recommended to either use those results, or 132 ensure that PMC profiles are screened using the reported SOFIE PMC observations (Hervig et al., 133 2009). Because PMC-induced errors occur only during polar summer and not necessarily in every 134 profile, PMC induced NO errors are not included in the total uncertainty estimates below.

Figure 3. Comparison of average NO profiles during polar summer (-30 to 60 days from solstice, during 2007 to 2013) with and without PMCs present, for the a) SH and b) NH. c) Difference in average NO ND for the profiles with and without PMCs, for both hemispheres.

135

136 The main error sources in retrieved NO are summarized in Table 1 for a range of altitudes. 137 The largest measurement errors are due to noise and the thermal response correction, which is 138 larger for sunrise observations than in sunsets (see Gomez-Ramirez et al. (2013) for details). The 139 remaining errors are in the category of measurement interpretation as encompassed by model 140 simulations of the SOFIE signal. Errors in the interfering gases (measured or modeled) were taken 141 from the relevant publications, as discussed above. Each error mechanism was imposed in the V1.3 142 SOFIE retrieval algorithm to determine the uncertainty induced in retrieved NO ND. The V1.3 143 SOFIE forward model uses HITRAN 2004 line parameters, which are estimated to have $\sim 7\%$ 144 systematic uncertainties for NO near 5.32 μ m. Altitude registration errors are estimated to be ~100 m (Marshall et al., 2011). While errors in temperature propagate directly into NO VMR, they do 145 146 not affect ND, which is a strong argument for using ND in the thermosphere where SOFIE does 147 not measure temperatures. The uncertainties in retrieved NO are summarized at key altitudes in 148 Table 1 for each mechanism, along with the total uncertainty. The largest four error sources are

- shown versus height in Figure 4, where it is clear that water vapor interference errors dominate
- 150 below ~90 km, for both sunrise and sunset. For sunset measurements NO ND errors are dominated
- 151 by noise above ~100 km. Sunrise NO errors are dominated by the thermal response correction
- above ~90 km, as discussed by Gomez-Ramirez et al. (2013).

Table 1. Uncertainty (%) in retrieved NO number density versus altitude due to various random (R) and systematic (S) error mechanisms. Two values are listed when they were different for sunrise / sunset.

sum ise / sumset.						
Error Source	Altitude (km)					
	140	120	100	80	60	40
Altitude Registration (S)	1	2	5	10	5	2
H ₂ O Interference (S)	0	0	1	30	30	10
CO ₂ Interference (S)	0	0	1	3	5	3
O ₃ Interference (S)	0	0	0	1	3	10
Line Strengths (S)	7	7	7	7	7	7
Relative Spectral Response (S)	5	5	5	5	5	5
Field-of-View (S)	2	3	4	4	3	3
Forward Model (S)	3	3	3	3	3	3
Signal Noise (R)	40	20	10	10	5	3
Thermal Response Correction (R)	30 / 15	30 / 15	30 / 10	20 / 5	10/3	5/3
Total (root sum squared)	51 / 44	37 / 27	34 / 18	40 / 35	34 / 33	18 / 18

153

Figure 4. SOFIE NO uncertainties vs height. Results are shown for the four largest error mechanisms (by color), and for the total (random plus systematic) uncertainty. Values are as given in Table 1. Dashed curves represent sunrise and solid curves indicate sunset results. Dot-dash lines apply to both sunrise and sunset.

154 **4. Measurement Comparisons**

155 Time separation is important in the measurement comparisons because NO abundance can 156 have a strong diurnal dependence, with more than 10% per hour changes in ND near local sunrise or sunset, depending on altitude, latitude, and season (e.g., Siskind et al., 2019). This effect can be 157 managed in the comparisons by 1) keeping the measurement separations as small as possible, or 158 159 2) applying a modeled diurnal correction to measurements that are separated in time. Removing 160 diurnal dependence using a model description was determined to induce unacceptably large 161 uncertainties, in part because the model results are dependent on transport as well as 162 photochemistry. The first approach was therefore adopted here, finding coincident measurement pairs for maximum separations of 2 hours UT, 4° latitude, and 20° longitude. Note that 20° 163 longitude corresponds to ~1.3 hours in local time. These coincidence criteria insured that average 164 165 measurement separations were less than one hour. Note that when this work mentions sunrise or 166 sunset (for SOFIE and/or ACE) that it always refers to the view from orbit. SOFIE spacecraft 167 sunset is always Earth sunrise (and vice versa), due to the retrograde polar orbit. ACE can have 168 varying correspondence between sunset or sunrise as viewed from orbit or Earth, and thus it is 169 important to track LT in the comparisons. Finally, the comparisons shown below include SOFIE 170 profiles with PMCs, and the results do not change when excluding profiles with PMCs. This is 171 because SOFIE NO results used here have been filtered at PMC heights when PMCs were present 172 (see Section 2), and because the MIPAS and ACE NO measurements are not affected by PMC 173 contamination (Funke et al., 2005; Kerzenmacher et al., 2008). SOFIE - ACE coincidences are 174 illustrated in Figure 5 including a summary of the coincidence statistics, and SOFIE - MIPAS 175 coincidences are shown in Figure 6.

Figure 5. Summary of SOFIE - ACE coincidences. Measurement latitude vs. year in the a) NH (SOFIE sunrise; local sunset) and b) SH (SOFIE sunset; local sunrise). Measurement LT versus day of year in the c) NH and d) SH. There were 2968 coincidences in the NH with average separations of 0.7 hours, 1.7° latitude, and 8.0° longitude. There were 2473 coincidences in the SH with average separations of 0.6 hours, 2.3° latitude, and 8.0° longitude.

176

Figure 6. Summary of SOFIE - MIPAS coincidences. Measurement latitude vs. year in the a) NH (SOFIE sunrise; local sunset) and b) SH (SOFIE sunset; local sunrise). Measurement LT versus day of year in the c) NH and d) SH. The NH had 894 coincidences with average separations of 0.9 hours, 1.3° latitude, and 9.6° longitude. The SH had 985 coincidences with average separations of 0.8 hours, 1.4° latitude, and 8.7° longitude. Note that the MIPAS solar zenith angles ranged from 82 - 95° for the SH SOFIE comparisons and 84 - 94° for the NH comparisons, which is near local sunrise (or sunset).

177

SOFIE, ACE, and MIPAS have effective vertical resolution of roughly 2.5, 3.5, and >5km, respectively, despite differences in the FOVs and reported vertical spacing. For the comparisons shown here, the ACE and MIPAS results were interpolated to the SOFIE 3 km vertical scale, with no additional smoothing applied. Note that the results below are essentially unchanged if the NO profiles are interpolated to either the ACE or MIPAS vertical scales instead. Comparison of NO

183 vertical profiles are shown in Figure 7 for SOFIE vs. ACE, and in Figure 8 for SOFIE vs. MIPAS. 184 The comparisons are shown as average profiles, mean and root-mean-square (RMS; i.e. random 185 plus systematic) differences, and the number of points used in the comparison at each altitude. 186 SOFIE - ACE mean differences are within 50% for altitudes from ~50 to 107 km in both the SH 187 and NH (Figures 7b and 7d). SOFIE - MIPAS differences are within ~50% for ~55 - 140 km in 188 the SH (Figure 8). The NH MIPAS comparison indicates larger differences than in the SH, but 189 with some similarities in the dependence on height (e.g. SOFIE > MIPAS near 140 km). The 190 SOFIE - MIPAS comparison above ~130 km in the SH (~140 km in the NH) indicates an 191 increasing bias with SOFIE suggesting higher NO. Siskind et al. (2019) noted a similar bias from 192 indirect comparisons of SOFIE with the Student Nitric Oxide Explorer (SNOE) results. Note that 193 the number of measurement pairs used in the comparisons is fairly consistent in height for the SH 194 (SOFIE sunset), in both the ACE and MIPAS comparisons (Figures 7c and 8c). The NH (SOFIE 195 sunrise) comparisons, however, have very few valid measurements between \sim 50 and 80 km 196 (Figures 7f and 8f), due to the lack of good SOFIE (and sometimes ACE) results at these altitude 197 for sunrise.

198 Comparing the SOFIE - ACE and SOFIE - MIPAS mean differences shows notable 199 similarities in both the height dependence and magnitude of the differences, especially in the SH 200 (Figure 9a). In particular, SOFIE NO is consistently ~50% or more lower than ACE and MIPAS 201 near the stratopause (~50 km) in both the SH and NH (Figure 9). These similarities suggest the 202 presence of a systematic error in SOFIE, although a potential error mechanism has not yet been 203 identified. It should be noted that diurnal variations in NO, which are strongest in the stratosphere 204 and thermosphere, can determine that occultation measurements are viewing through strong spatial 205 gradients along the tangent path. The impact of such gradients has not yet been quantified, but

- 206 should appear as a systematic bias in retrieved NO. Note that the comparisons in the NH
- additionally indicate that MIPAS NO is greater than ACE, particularly below ~90 km (Figure 9b),
- a difference that was also reported by Bender et al. (2015).

Figure 7. Comparison of SOFIE and ACE NO number density profiles, for the coincidences shown in Figure 5. Comparisons in the SH (SOFIE spacecraft sunset; local sunrise) as a) average profiles, b) mean and RMS differences, and c) number of points in the comparison at each altitude. Comparisons in the NH (SOFIE sunrise; local sunset) as d) average profiles, e) mean and RMS differences, and f) number of points in the comparison. Horizontal lines on the average NO profiles indicate standard deviations.

Figure 8. Comparison of SOFIE and MIPAS NO vertical profiles, for the coincidences shown in Figure 6. Comparisons in the SH (SOFIE spacecraft sunset; local sunrise) as a) average profiles, b) mean and RMS differences, and c) number of points in the comparison at each altitude. Comparisons in the NH (SOFIE sunrise) as d) average profiles, e) mean and RMS differences, and f) number of points in the comparison. Mean NO and NO differences are only shown when there were more than 30 points in the comparison. Horizontal lines on the average profiles indicate standard deviations.

211

212 Time series of monthly zonal mean NO at selected altitudes are compared for the SOFIE -ACE coincidences in Figure 10, and for the SOFIE - MIPAS coincidences in Figure 11. These 213 214 time series indicate good agreement on the timing and magnitude of NO variations, despite 215 systematic differences at certain altitudes. To better quantify the agreement concerning time 216 variations, linear correlation coefficients were determined for each height in the SOFIE - ACE and 217 SOFIE - MIPAS comparisons. Results in the SH (Figure 12a) show a strong correlation between 218 SOFIE and ACE or MIPAS for altitudes below ~130 km. Results in the NH (Figure 12b) indicate 219 a significant correlation between SOFIE and ACE for 90 - 107 km. The NH SOFIE - MIPAS 220 comparisons also indicate a high correlation for ~90 - 110 km. Note that the correlations were not

- 221 determine in the NH for ~50 to 85 km because there were very few SOFIE NO retrievals (e.g.
- Figures 10e and 11g).

Figure 10. Comparison of SOFIE and ACE NO time series as monthly zonal means, for the coincidences shown in Figure 5. SH results are shown for a) 100 km, b) 70 km, and c) 40 km altitude. NH results are shown for d) 100 km, e) 70 km, and f) 40 km altitude.

223

Figure 11. Comparison of SOFIE and MIPAS NO time series as monthly zonal means, for the coincidences shown in Figure 6. SH results are shown for a) 130 km, b) 100 km, c) 70 km, and d) 40 km altitude. NH results are shown for e) 130 km, f) 100 km, g) 70 km, and h) 40 km altitude.

224

Figure 12. SOFIE - ACE and SOFIE - MIPAS correlation coefficients for comparison of monthly mean NO time series (as in Figures 10 and 11). Results are shown versus height in the a) SH and b) NH. Note that results are only shown when more than half of the monthly mean points were valid for both instruments, which was primarily a concern for the NH below ~80 km. Where results are shown, there were typically more than 40 points in the comparison, for which the 95% significance level is a correlation coefficient of ~0.3 or greater.

225 **5. Summary**

Comparisons of SOFIE NO with coincident measurements from ACE and MIPAS indicate mean differences of less than ~50% for altitudes from roughly 50 to 105 km for SOFIE spacecraft sunrise, and ~50 to 140 km for SOFIE sunsets. Comparisons of NO time series show significant correlation between SOFIE and either ACE or MIPAS for altitudes of ~40 - 130 km in the SH, indicating that measured NO variability is robust. Correlations were significant in the NH for ~90 to 130 km, but not at lower heights due to the sparse SOFIE results in that altitude range. SOFIE uncertainties increase below ~85 km due primarily to interfering H₂O absorption and signal

233 correction errors. These effects are sufficiently large in SOFIE sunrise measurements that retrieved 234 NO is only reliable below ~ 80 km during enhancement events (in < 20% of the data), such as 235 downward transport due to a sudden stratospheric warming (e.g., Bailey et al., 2014). SOFIE 236 sunset signals have lower signal correction errors, and the retrieved NO is reliable in more than 237 half of the measurements below 80 km. SOFIE NO should not be used when PMCs are present 238 due to the often extreme contamination, and these instances were filtered in the latest SOFIE V1.3 239 NO product which is available online. 240 Acknowledgements. This work was funded by the AIM mission through NASA Small Explorer 241 contract NAS5-03132. SOFIE data are available online at sofie.gats-inc.com. ACE is funded by 242 the Canadian Space Agency with P. Bernath (University of Waterloo and Old Dominion University) as the Mission Scientist. ACE data are available online at databace.scisat.ca. MIPAS 243 244 data are available online at share.lsdf.kit.edu/imk/asf/sat/mipas-export/.

245 **References**

- 246 Bailey, S. M., Thurairajah, B., Randall, C. E., Holt, L., Siskind, D. E., Harvey, V. L.,
- Venkataramani, K., Hervig, M. E., Rong, P., and Russell, J. M. III: A multi tracer analysis of
 thermosphere to stratosphere descent triggered by the 2013 Stratospheric Sudden Warming,
 Geophys. Res. Lett., 41, 5216–5222, doi:10.1002/2014GL059860, 2014.
- 250 Bender, S., Sinnhuber, M., von Clarmann, T., Stiller, G., Funke, B., López-Puertas, M., Urban, J.,
- 251 Pérot, K., Walker, K. A., and Burrows, J. P.: Comparison of nitric oxide measurements in the
- 252 mesosphere and lower thermosphere from ACE-FTS, MIPAS, SCIAMACHY, and SMR,
- 253 Atmos. Meas. Tech., 8, 4171-4195, https://doi.org/10.5194/amt-8-4171-2015, 2015.
- 254 Bermejo-Pantaleón, D., Funke, B., López-Puertas, M., García-Comas, M., Stiller, G. P., von
- 255 Clarmann, T., Linden, A., Grabowski, U., Höpfner, M., Kiefer, M., Glatthor, N., Kellmann,

- 256 S., Lu, G.: Global observations of thermospheric temperature and nitric oxide from MIPAS
- 257 spectra at 5.3 μm, J. Geophys. Res., 116, A10313, doi:10.1029/2011JA016752, 2011.
- Bernath, P.: Atmospheric Chemistry Experiment (ACE): Mission Overview,
 Fourier Transform Spectroscopy/ Hyperspectral Imaging and Sounding of the Environment,
 24-27, doi:10.1364/FTS.2005.JMA3, 2005.
- 261 Funke, B., Stiller, G. P., Fischer, H., Glatthor, N., Grabowski, U., Hopfner, M.,
- 262 Kellmann, S., Kiefer, M., Linden, A., Mengistu Tsidu, G., Milz, M., Steck, T., and Wang, D.
- 263 Y.:, Retrieval of stratospheric NOx from 5.3 and 6.2 μm nonlocal thermodynamic equilibrium
- 264 emissions measured by Michelson Interferometer for Passive Atmospheric Sounding
 265 (MIPAS) on Envisat, J. Geophys. Res., 110, D09302, doi:10.1029/2004JD005225, 2005.
- Garcia, R. R., Marsh, D. R., Kinnison, D. E., Boville, B. A., and Sassi, F.: Simulations of secular
 trends in the middle atmosphere, 1950–2003, J. Geophys. Res., 112, D09301,
 doi:10.1029/2006JD007485, 2007.
- 269 Gomez-Ramirez, D., McNabb, J. W. C., Russell, J. M. III, Hervig, M. E., Deaver, L. E., Paxton,
- G., and Bernath, P. F.: Empirical correction of thermal responses in the SOFIE nitric oxide
 measurements and initial data validation results, Appl. Optics, 52, 2950–2959, 2013.
- 272 Gordley, L. L., Hervig, M., Fish, C., Russell, J. M. III, Bailey, S., Cook, J., Hansen, S., Shumway,
- A., Paxton, G., Deaver, L., Marshall, T., Burton, J., Magill, B., Brown, C., Thompson, E., and
- 274 Kemp, J.: The Solar Occultation For Ice Experiment (SOFIE), J. Atmos. Solar-Terr. Phys.,
- 275 71, 300-315, doi:10.1016/j.jastp.2008.07.012, 2009.
- 276 Hendrickx, K., Megner, L., Gumbel, J., Siskind, D. E., Orsolini, Y. J., Nesse Tyssøy, H., and
- 277 Hervig, M.: Observation of 27 day solar cycles in the production and mesospheric descent of

- 278 EPP-produced NO, J. Geophys. Res. Space Physics, 120, 8978-8988,
- doi:10.1002/2015JA021441, 2015.
- 280 Hendrickx, K., Megner, L., Marsh, D., Gumbel, J., Strandberg, R., Martinsson, F.: Relative
- Importance of Nitric Oxide Physical Drivers in the Lower Thermosphere, Geophys. Res.
 Letters, 44, https://doi.org/10.1002/2017GL074786, 2017.
- Hendrickx, K., Megner, L., Marsh, D. R., and Smith-Johnsen, C.: Production and transport
 mechanisms of NO in observations and models, Atmos. Chem. Phys. Discuss., doi:
- 285 10.5194/acp-2017-1188, 2018.
- Hervig, M.E., Gordley, L.L., Stevens, M., Russell, J.M. III, Bailey, S., and Baumgarten, G.:
 Interpretation of SOFIE PMC measurements: Cloud identification and derivation of mass
 density, particle shape, and particle size, J. Atmos. Solar-Terr. Phys., 71, 316-330,
 doi:10.1016/j.jastp.2008.07.009, 2009.
- 290 Kerzenmacher, T., Wolff, M. A., Strong, K., Dupuy, E., Walker, K. A., Amekudzi, L. K.,
- 291 Batchelor, R. L., Bernath, P. F., Berthet, G., Blumenstock, T., Boone, C. D., Bramstedt, K.,
- 292 Brogniez, C., Brohede, S., Burrows, J. P., Catoire, V., Dodion, J., Drummond, J. R., Dufour,
- 293 D. G., Funke, B., Fussen, D., Goutail, F., Griffith, D. W. T., Haley, C. S., Hendrick, F.,
- 294 Höpfner, M., Huret, N., Jones, N., Kar, J., Kramer, I., Llewellyn, E. J., López-Puertas, M.,
- 295 Manney, G., McElroy, C. T., McLinden, C. A., Melo, S., Mikuteit, S., Murtagh, D., Nichitiu,
- 296 F., Notholt, J., Nowlan, C., Piccolo, C., Pommereau, J.-P., Randall, C., Raspollini, P., Ridolfi,
- 297 M., Richter, A., Schneider, M., Schrems, O., Silicani, M., Stiller, G. P., Taylor, J., Tétard, C.,
- 298 Toohey, M., Vanhellemont, F., Warneke, T., Zawodny, J. M., and Zou, J.: Validation of
- 299 NO2 and NO from the Atmospheric Chemistry Experiment (ACE), Atmos. Chem. Phys., 8,
- 300 5801-5841, https://doi.org/10.5194/acp-8-5801-2008, 2008.

- 301 Newnham, D. A., Clilverd, M. A., Rodger, C. J., Hendrickx, K., Megner, L., Kavanagh, A. J.,
- 302 Seppälä, A., Verronen, P. T., Andersson, M. E., Marsh, D. R., Kovács, T., Feng, W., Plane, J.
- 303 M. C.: Observations and modeling of increased nitric oxide in the Antarctic polar middle
- 304 atmosphere associated with geomagnetic storm-driven energetic electron precipitation. J.
- 305 Geophys. Res. Sp. Phys., 123, 6009–6025. https://doi.org/ 10.1029/2018JA025507, 2018.
- 306 Sheese, P. E., Walker, K. A., Boone, C. D., McLinden, C. A., Bernath, P. F., Bourassa, A. E.,
- 307 Burrows, J. P., Degenstein, D. A., Funke, B., Fussen, D., Manney, G. L., McElroy, C. T.,
- 308 Murtagh, D., Randall, C. E., Raspollini, P., Rozanov, A., Russell III, J. M., Suzuki, M.,
- 309 Shiotani, M., Urban, J., von Clarmann, T., and Zawodny, J. M.: Validation of ACE-FTS
- 310 version 3.5 NOy species profiles using correlative satellite measurements, Atmos. Meas.
- 311 Tech., 9, 5781-5810, https://doi.org/10.5194/amt-9-5781-2016, 2016.
- 312 Siskind, D. E., Sassi, F., Randall, C. E., Harvey, V. L., Hervig, M. E., Bailey, S. M., Russell, J. M.
- 313 III: Is a high-altitude meteorological analysis necessary to simulate thermosphere-stratosphere
- 314 coupling?, Geophys. Res. Lett., 42, 8225–8230, doi:10.1002/2015GL065838, 2015.
- 315 Siskind, D. E., Jones Jr., M., Drob, D. P., McCormack, J. P., Hervig, M. E., Marsh, D. R.,
- Mlynczak, M. G., Bailey, S. M., Maute, A., and Mitchell, N. J.: On the relative roles of dynamics and chemistry governing the abundance and diurnal variation of low-latitude thermospheric nitric oxide, Ann. Geophys., 37, 37-48, https://doi.org/10.5194/angeo-37-37-2019, 2019.
- 320 Smith-Johnsen, C., Nesse Tyssøy, H., Hendrickx, K., Orsolini, Y., Kishore Kumar, G., Ødegaard,
- L.-K. G., Sandanger, M. I., Stordal, F., and Megner, L.: Direct and indirect electron
 precipitation effect on nitric oxide in the polar middle atmosphere, using a full-range energy

- 323 spectrum, J. Geophys. Res. Space Physics, 122, 8679–8693, doi:10.1002/2017JA024364,
- 324 2017.
- 325 Smith-Johnsen, C., Marsh, D. R., Orsolini, Y., Nesse Tyssøy, H., Hendrickx, K., Sandanger, M.
- 326 I., Glesnes Ødegaard, L., Stordal, F.: Nitric oxide response to the April 2010 electron
- 327 precipitation event: Using WACCM and WACCM-D with and without medium-energy
- 328 electrons. J. Geophys. Res.: Space Physics, 123, https://doi.org/10.1029/2018JA025418,
- 329 2018.

330